Nonfouling Hydrophilic Poly(ethylene glycol) Engraftment Strategy for PDMS/SU-8 Heterogeneous Microfluidic Devices

We report a novel nonfouling passivation method using poly(ethylene glycol) (PEG) engraftment on the surfaces of poly(dimethylsiloxane) (PDMS) microfluidic devices sealed with SU-8. To achieve bonding between the PDMS and SU-8 surfaces, the PDMS surface was first functionalized with amines by treatment with 3-amino-propyltrimethoxysilane (APTMS) for subsequent reaction with epoxide functional groups on SU-8 surfaces. To modify the heterogeneous surfaces of the resulting PDMS/SU-8 microfluidic device further, the remaining SU-8 surfaces were amino functionalized using ethylene diamine (EDA), followed by treating both amino-functionalized PDMS and SU-8 surfaces with mPEGNHS (N-hydroxysuccinimide) through an amine-NHS reaction for facile PEG immobilizations, thus simultaneously modifying both PDMS and SU-8 surfaces in one reaction. Detailed surface analyses such as the water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were conducted to confirm the chemical reactions and characterize the resulting surface properties. To test the efficacy of this surface-modification strategy, we conducted nonspecific protein and particle binding tests using microfluidic devices with and without modifications. The PEG-modified PDMS/SU-8 device surfaces showed a 64.5% reduction in nonspecific bovine serum albumin (BSA) adsorption in comparison to that of the unmodified surfaces and 92.0 and 95.8% reductions in microbead adhesion under both stagnant and flowing conditions, respectively.

Leave a Reply