>Hydrogels are widely used as scaffolds in tissue engineering because they can provide excellent environments for bioactive components including growth factors and cells. We reported in this study on a physical hydrogel formed by a specific protein-peptide interaction, which could be used for the three dimensional (3D) cell culture of murine mesenchymal stem cells (mMSC). The mMSC kept dividing during the 7-day culture period and the metabolic-active cell number at day 7 was 359% more than that at day 1. This kind of physical hydrogel could be converted to a homogeneous solution by firstly adding an equal volume of culture medium and then pipeting for several times. Therefore, mMSC post culture could be easily separated from cell-gel constructs. We believed that the protein-based hydrogel system in this study could be developed into a promising scaffold for in vitro expansion of stem cells and cell therapy. This work would be in the general interests of researchers in the fields of biomaterials and supramolecular chemistry.
A Protein-Based Hydrogel for In Vitro Expansion of Mesenchymal Stem Cells
This article is automatically posted by WP-AutoPost Plugin
Source URL:http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0075727