Characterization of Pore Structure in Biologically Functional Poly(2-Hydroxyethyl Methacrylate) – Poly(Ethylene Glycol) Diacrylate (PHEMA-PEGDA)

>A copolymer composed of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(ethylene glycol) diacrylate (PEGDA) (PHEMA-PEGDA) is structurally versatile. Its structure can be adjusted using the following porogens: water, sucrose, and benzyl alcohol. Using phase separation technique, a variety of surface architectures and pore morphologies were developed by adjusting porogen volume and type. The water and sucrose porogens were effective in creating porous and cytocompatible PHEMA-PEGDA scaffolds. When coated with collagen, the PHEMA-PEGDA scaffolds accommodated cell migration. The PHEMA-PEGDA scaffolds are easy to produce, non-toxic, and mechanically stable enough to resist fracture during routine handling. The PHEMA-PEGDA structures presented in this study may expedite the current research effort to engineer tissue scaffolds that provide both structural stability and biological activity.

This article is automatically posted by WP-AutoPost Plugin

Source URL: